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Abstract: We analyze a legal compensation scheme axiomatically under the situation
where causation of the cumulative injury appears in multiple sequences of wrongful acts

caused by tortfeasors. This situation is a generalization of joint liability problems on tort

law, and it is described by a rooted-tree graph. We show that there is a unique compen-

sation scheme that satis�es three axioms, one about lower bounds of individual compen-

sations, one about upper bounds of individual compensations, and one about case-system

consistency. These axioms are derived from legal observations on tort law. The unique

compensation scheme satisfying the three axioms yields the Nucleolus of an associated

liability game.

JEL Classi�cation Number : C71; D63; K13; K49
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1 Introduction

Tort Law is a body of rights, obligations, and remedies concerning tort. As stated in Black�s

Law Dictionary (the tenth edition), tort is a civil wrong, other than breach of contract, for

which a remedy may be obtained, usually in the form of damages; a breach of a duty that

the law imposes on persons who stand in a particular relation to one another. Tort law is

applied by courts, and it often deals with the question how the tortfeasor (i.e. the person or
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persons who is/are responsible for the damage) should �nancially compensate the plainti¤

(i.e. the person who su¤ered the pecuniary damage). In this paper, we consider situations

where an injured party su¤ers damages caused by wrongful acts performed subsequently

by a sequence of injuring parties. The wrongful acts are causally related in the sense that

any wrongful act in the sequence would not have occurred if any of the preceding wrongful

acts would not have occurred. So, the second (wrongful) act can only occur after the �rst

(wrongful) act has occurred, the third (wrongful) act can only occur when both the �rst

and the second (wrongful) acts have occurred and so on. Any wrongful act results in an

amount of damage to the injured party. The injuring parties are the tortfeasors who can

be considered to be jointly liable for the full damage. The problem is how to apportion the

full damage among the tortfeasors. In many real-life situations, this problem is brought to

court. This sharing problem is referred to as the joint liability problem. Since this problem

can be viewed as allocating the damage cost over the tortfeasors, the joint liability problem

is an issue of Law and Economics.

Historically, common law did not accept any apportionment among the tortfeasors, but

evolution of common law in the 19th and 20th centuries led to the Restatement of Law,

Torts (the Restatement of Torts for short), which is formulated by the American Law

Institute, providing basic principles and rules to apportion the damages.

A systematic apportionment method for joint liability problems is an important subject

of research in Law and Economics. In the existing literature, it is a central topic to clarify

whether or not a legal compensation scheme for joint liability problems is useful, see for

instance Landes and Posner (1980), Shavell (1983), and Parisi and Singh (2010). These

authors analyze the functioning of compensation schemes from the viewpoint of incentives.

On the other hand, the viewpoint of fairness is also important. In fact, tort law pre-

scribes an award of damages to achieve fair compensation for injury, which is pointed out

in the literature of Law, see for instance Boston (1995-1996). A few researchers have inves-

tigated the normative aspects of compensation schemes for joint liability problems. Dehez

and Ferey (2013) introduce a certain compensation scheme formalized by causal weights

among the injuring parties and the list of certain damages caused by every tortfeasor. They

show that for every joint liability problem this compensation scheme yields the weighted

Shapley value of a corresponding transferable utility game (TU game for short). Ferey

and Dehez (2016) axiomatize the Shapley value for the joint liability problems described

in Dehez and Ferey (2013). The (weighted) Shapley value (Shapley 1953; Kalai and Samet

1987) is an established solution for TU games, and it is a game theoretic expression of

fairness.1

1Several notions of fairness underlying the Shapley value are proposed in the existing literature, for

instance see Myerson (1980) and van den Brink (2001).
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Figure 1: Rooted tree with two branches.

In this paper, we focus on the situation where the causal relation is determined but

the determination of causal weights among the injuring parties is di¢ cult.2 There are two

reasons for this reasoning. Firstly, since a judge determines causal weights subjectively,

fair compensation for injury is di¢ cult in practice. Secondly, if the judge�s transaction cost

of this determination is high, then the determination is impossible.

The purpose of our study is to analyze the functioning of compensation schemes from

the viewpoint of fairness. For this purpose, we take an axiomatic approach which is common

in Economics.3 The axioms proposed in this paper are derived by taking into account tort

law and case system in practice. Using these axioms, we characterize the compensation

scheme associated with the �di¤erence principle of social justice�à la Rawls (1971).

In the existing literature, the joint liability problem, as described in Dehez and Ferey

(2013) and Ferey and Dehez (2016), has a linear structure in the sense that the agents

are linearly ordered: the wrongful act of agent i can only occur when all the predecessors

of i behave wrongfully. In this paper, we propose a generalized joint liability problem by

considering rooted-tree structures. The class of generalized liability problems includes joint

liability problems since the linear structure is a rooted-tree structure. As an example of

generalized liability problems, we consider the case where the injured party su¤ers an injury

caused by four agents, 1, 2, 3, and 4. Agent 1 has taken a wrongful act that is the root of

the injury. After agent 1�s wrongful act, agents 2 and 3 have taken wrongful acts. Without

agent 1�s wrongful act, agents 2 and 3�s wrongful acts would not have occurred. On the

other hand, agent 2�s wrongful act does not a¤ect agent 3�s wrongful act, and reversely.

After agent�s 1 wrongful act, the wrongful act of agent 3 might occur without the wrongful

act of agent 2. Similarly, the wrongful act of agent 2 might occur without the wrongful act

of agent 3. Without the wrongful acts of both agents 1 and 2, agent 4�s wrongful act would

2The assumption under which causal relation is determined is the same as in the existing literature,

e.g. Dehez and Ferey (2013) and Ferey and Dehez (2016).
3Axiomatic approaches to economic allocation problems, where the axioms are based on principles of

distributive justice, have been described in, e.g. Moulin (2003).

3



not have occurred. This example can be illustrated by the rooted-tree graph of Figure 1.

In this graph, agent 1 is located at the root and has two branches, at one branch agent 1

is succeeded by agent 2 and agent 2 is succeeded by agent 4, at the other branch agent 1 is

succeeded by agent 3. Agents 3 and 4 are the leafs of the tree. The rooted-tree represents

the hierarchical structure of causation of the cumulative injury. In this paper, we focus on

the class of generalized joint liability problems.

To illustrate what kind of real-life situation can be described in such a hierarchical

structure of causation as in Figure 1, imagine that a natural disaster as a downpour occurs

in two cities A and B.4 These cities belong to a prefecture P. In Figure 1, the prefectural

o¢ ce of P is agent 1. Also, city o¢ ces of A and B are agents 2 and 3, respectively. In

city A, only the people in a town A�su¤er from the downpour. The town o¢ ce of A�is

agent 4. The injured party is the people in the town A�(in city A) or the city B. Let us

consider the following scenario: The prefectural o¢ ce 1 has taken a wrongful act of the

evacuation for the injured party. Without the agent 1�s wrongful act, the city o¢ ces 2 and

3 would not have taken any wrongful act of the evacuation for the injured party. Without

the agents 1 and 2�s wrongful act, the town o¢ ce 4 would not have taken any wrongful act

of the evacuation for the injured party. Thus, the injured party su¤er from the cumulative

injury caused by all the agents 1, 2, 3, and 4.

As Dehez and Ferey (2013) and Ferey and Dehez (2016) point out, for every joint

liability problem a legal compensation scheme concerning tort law should satisfy such

individual compensation properties as in Property 1.1. In this property, the additional

damage of tortfeasor i is the sum of all damages that would not have occurred without the

wrongful act of i. The potential damage of tortfeasor i is the damage that i causes when

all the members except for i do not behave wrongfully.

Property 1.1

(i) Every injuring party should pay at least the potential damage that he would

have caused alone. This principle is supported in the literature of Law (for

instance, see Peaslee 1934).

(ii) Every injuring party should pay at most the additional damage that he would

have caused. This principle is supported by the Restatement of Torts (Third),

Topic 5.

4This illustration is inspired from the following case observed in Japan. In 2009, twenty people were

killed by the downpour in Sayo town, Hyogo prefecture. Their bereaved family �led a lawsuit against the

town o¢ ce for compensation for injury. They claimed that the cause of their family�s death was the Sayo

town o¢ ce�s wrongful act of the evacuation.

4



We propose three axioms, two inspired by Property 1.1, and one by case system observed

in the UK and USA.

The �rst axiom is inspired from Property 1.1 (i). This axiom sets for every tortfeasor a

uniform lower bound. This lower bound is the same for every tortfeasor. For an individual

tortfeasor, the best possible outcome is an outcome where he has to pay this lower bound.

On the other hand, the second axiom is inspired from Property1.1 (ii). This axiom sets for

every tortfeasor an individual upper bound. This upper bound di¤ers over the tortfeasors

and gives every tortfeasor his worst possible outcome.

In order to set the lower and upper bound axioms, a per capita criterion is employed.

This is because in join liability problems it is often impossible to determine the causal

weights among the injuring parties. In this situation, the per capita criterion might be

one of practical methods to determine the lower and upper bounds. For instance, in Japan

courts employed the notion of per capita criterion in joint liability problems before the

1990�s. Furthermore, in order to set the lower and upper bound axioms, the legal notion of

proximate cause and intervening cause is employed. Proximate cause is the cause that in a

natural and continuous sequence of wrongful acts both produces the injury and is necessary

for the injury. Intervening cause is the cause which can be regarded as a cause separated

from the proximate cause and which would have caused injury or damages. Intervening

cause is legally classi�ed as divisible one and indivisible one. Divisibility comes from the

strength of causal relation among tortfeasors. Formally, lower and upper bounds are derived

from the per-capita contribution of additional damage of every tortfeasors. The underlying

situation of the corresponding per-capita contributions to the lower bound axiom is the

situation where proximate cause and perfectly divisible intervening causes are occurred.

On the other hand, the underlying situation of the corresponding per-capita contributions

to upper bounds axiom is the situation where proximate cause and indivisible intervening

cause are occurred.

The last axiom stems from the stylized fact that in the UK and USA, a legal compensa-

tion scheme is based on case system consistency (see for instance Ito 1978). This requires

that a legal scheme should provide an outcome that is consistent with the outcome that the

same procedure generates for a di¤erent, but similar problem. In this paper, we propose

causal consistency. This type of case system consistency requires that for every generalized

liability problem the compensation scheme should be invariant under the situation where

the agents who make intervening causes of every additional damage pay their compen-

sations and leave. It guarantees legal stability in the following sense: If the tortfeasors,

who make intervening causes of every additional damage, accept the payments they have

to make, then they need not go to court. When the remaining tortfeasors agree with the

departure of the tortfeasors, a judge faces with the legal situation represented by a reduced
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liability problem without the leaving tortfeasors. Causal consistency means that under

this situation the remaining agents have no incentive to make the �nal appeal to the court

instead of accepting the recommendations.

We show that there is a unique compensation scheme that satis�es the lower bounds

axiom of individual compensations, the upper bounds axiom of individual compensations,

and the causal consistency axiom. This scheme assigns to every generalized liability prob-

lem with rooted-tree structure the Nucleolus of the corresponding TU game derived from

generalized liability problems. The Nucleolus (Schmeidler 1969) is another established so-

lution for TU games, and it is also a game theoretic expression of fairness. In this paper, on

the class of generalized liability problems the compensation scheme obtained from apply-

ing the Nucleolus is referred to as the Nucleolus compensation scheme. Besides the axioms

discussed above, the Nucleolus compensation scheme has three appealing properties.

Firstly, the Nucleolus is an established outcome for TU games. In fact, it is a game-

theoretic expression of the �di¤erence principle of social justice�à la Rawls (1971). So, when

it is desirable that a legal compensation scheme for joint liability problems is to attain a

Rawlsian outcome, the three axioms yield a useful compensation scheme.

Secondly, it is well known that the Nucleolus of a game is in the core if the core is

non-empty. In this paper, two TU games are derived from Property 1.1, that is, the lower

bound liability game derived from Property 1.1 (i), and the upper bound liability game

derived from Property 1.1 (ii). Since the lower bound liability game is shown to be convex,

and thus has a nonempty core, the Nucleolus compensation scheme yields a core outcome.

Using the fact that the upper bound liability game is the dual5 of the lower bound liability

game, it follows that the Nucleolus of the lower bound liability game lexicographically

maximizes over all di¤erent groups of tortfeasors the cost savings that are the di¤erences

between the additional damage caused by the members of every group of tortfeasors and the

actual compensation to be paid by them. Equivalently, it lexicographically minimizes the

dissatisfactions over the groups of tortfeasors with respect to their �worst-case�outcomes.

This last point also makes the Nucleolus compensation scheme very suitable for real life

application. In practice, in joint liability problems injuring parties sometimes make the

�nal appeal to the court when they feel dissatisfaction of the ruling, which implies that

it would take a long time until the injured party can receive compensation. Since the

Nucleolus lexicographically minimizes the corresponding dissatisfaction of injuring parties,

it is likely that the injured party can receive compensation as soon as possible without

facing with injuring parties��nal appeal to the court. In this sense, the Nucleolus is an

appealing solution for joint liability problems in practice.

Thirdly, as shown by Aumann and Maschler (1985), the Nucleolus can be seen as one

5For the de�nition of dual games, see Section 2.
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of the �rst implicitly applied game solutions to legal problems appearing in the Talmud.

The Nucleolus of an associated bankruptcy game is the unique solution that supports the

Talmudic principle of equal division of a contested amount. On the other hand, in the

model appearing in our paper, the Nucleolus of an associated liability game is the unique

solution that supports such a modern legal rule as the Restatement of Torts. Thus, the

Nucleolus is a prominent solution for various real-life problems in Law and Economics.

This paper is organized as follows. In Section 2, preliminaries are given. In Section 3, we

introduce the generalized liability problem, the corresponding liability games, the Nucleolus

compensation scheme. In Section 4, we explain legal notion of causes. In Section 5, we state

and discuss the three axioms to be satis�ed by a compensation scheme. In Section 6, we

characterize the Nucleolus compensation scheme by using the axioms appearing in Section

5. In Section 7, we discuss a comparison between the Shapley and Nucleolus compensation

schemes. Finally, in Section 8, we explore an incentive problem in the situation where the

population of the tortfeasors is increasing. Several lemmas for the proof of the theorem

and their proofs are in Appendix A.

2 Preliminaries

A cooperative game with transferable utility, or simply a TU game, is a pair (N; v), where

N � IN is a �nite set of players, and v : 2N ! IR is a characteristic function that assigns

a worth v(S) 2 IR to every subset (usually called coalition) S of N , satisfying v(;) = 0.

A TU game (N; v) is convex if v(S [ T ) + v(S \ T ) � v(S) + v(T ) for all S; T � N . It

is concave if these inequalities are reversed. We denote by G the class of all TU games.
The subclass of all convex TU games is denoted by Gvex and the subclass of all concave
TU games by Gcave. For a game (N; v) 2 G, the dual game, denoted by (N; vd), assigns to
every coalition S what the �grand coalition�N loses if the players in S stop cooperating,

and thus it is de�ned by vd(S) = v(N)� v(N n S) for all S � N . Note that vd(;) = 0 and
vd(N) = v(N). It holds that (N; v) 2 Gvex if and only if (N; vd) 2 Gcave.
A payo¤ vector of TU game (N; v) is a vector x 2 IRN giving a payo¤ xi 2 IR to

every player i 2 N . A payo¤ vector is e¢ cient if
P

i2N xi = v(N). Given (N; v) 2 G, let
X(N; v) be the set of all e¢ cient payo¤ vectors.6 The imputation set, denoted by I(N; v),

is the subset of all vectors in X(N; v) that satisfy xi � v(fig) for every i 2 N (individual

rationality); the anti-imputation set, denoted by AI(N; v), is the subset of all vectors in

X(N; v) that satisfy xi � v(fig) for every i 2 N . Note that these sets are non-empty if
and only if v(N) �

P
i2N v(fig), respectively v(N) �

P
i2N v(fig). We denote by GI the

class of all TU-games that satisfy I(N; v) 6= ;, and by GAI the class of all TU-games that
6In the �eld of cooperative game theory, X(N; v) is usually referred to as the �preimputation set�.

7



satisfy AI(N; v) 6= ;. Note that Gvex is a subset of GI and Gcave is a subset of GAI .
The core of a game (N; v), denoted by C(N; v), is the set of e¢ cient payo¤ vectors that

are group stable, and is given by

C(N; v) =

(
x 2 X(N; v)

�����X
i2S
xi � v(S) for all S � N

)
:

Note that C(N; v) is a subset of I(N; v) and that it might be empty. Every game (N; v) 2
Gvex has a non-empty core. A vector x 2 C(N; v) satis�es the requirement that for every
coalition S the total payo¤ is at least equal to its own worth. This is reasonable when

(N; v) is a pro�t game, i.e., the worth v(S) is the total revenue that the members of S

can achieve by cooperating. However, when v is a cost game, i.e., coalition S has costs

v(S) when it stands alone, then the worth should be considered as upper bounds on the

contributions. For a cost game, it makes sense to apply the anti-core of a game (N; v),

denoted by AC(N; v). This set of e¢ cient payo¤ vectors is given by

AC(N; v) =

(
x 2 X(N; v)

�����X
i2S
xi � v(S) for all S � N

)
:

The anti-core AC(N; v) is a subset of AI(N; v) and might be empty, but every game

(N; v) 2 Gcave has a non-empty anti-core.
For a given subset G 0 of the class G of all TU-games, a (single-valued) solution is a

function f that assigns to every game (N; v) in G 0 a payo¤ vector f(N; v) 2 X(N; v).

Note that in this paper, we require that a solution assigns to each game an e¢ cient payo¤

vector. The best-known solution on the class G of all TU-games is the Shapley value
(Shapley 1953), denoted by Sh. This solution assigns to every game (N; v) 2 G the payo¤
vector Sh(N; v) given by7

Shi(N; v) =
X

S�N :i2S

(jN j � jSj)!(jSj � 1)!
jN j! (v(S)� v(S n fig)) for all i 2 N:

So, for every player i 2 N the payo¤ is a weighted sum of its marginal contributions

v(S)� v(S n fig) to the coalitions S containing i. When (N; v) is convex, then Sh(N; v) 2
C(N; v). However, in general, on the domain of TU games with non-empty cores it might

be that the Shapley value is not in the core. Furthermore, it holds that the Shapley value

is self-dual (see Kalai and Samet 1987), saying that for every (N; v) 2 G it holds that
Sh(N; vd) = Sh(N; v).8

7For a �nite set A, we denote by jAj the number of elements in A (cardinality of A).
8The notion of (self-)duality plays an important role in axiomatizing solutions for TU games, see for

instance Oishi, Nakayama, Hokari, and Funaki (2016).
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Another well-known solution on the class of all TU-games is the Nucleolus. Given a

TU game (N; v) 2 G, we de�ne for every payo¤ vector x 2 X(N; v) and coalition S � N ,
the excess of S with respect to x as

e(S; x; v) � v(S)�
X
i2S
xi:

When the payo¤s are revenues, i.e., the payo¤s are payments to the players, the excess

e(S; x; v) can be seen as a measure of dissatisfaction of coalition S. Let �(x; v) 2 IR2N be the
vector obtained by arranging all the excesses in non-increasing order, so the �rst component

of �(x; v) is the excess of a coalition with the highest excess, the second component is the

excess of a coalition with the highest excess under the remaining coalitions, and so on.

The Nucleolus (Schmeidler 1969) is a solution de�ned on the class GI of games that satisfy
I(N; v) 6= ;. It assigns to every (N; v) 2 GI the unique individually rational payo¤ vector
x 2 I(N; v) that minimizes lexicographically the dissatisfactions over all vectors in I(N; v).
We denote the Nucleolus of a game (N; v) by Nuc(N; v). When the core is non-empty,

Nuc(N; v) 2 C(N; v).
Similarly, for every game (N; v) 2 GAI , we de�ne the Anti-Nucleolus, denoted by

ANuc(N; v), as the solution that assigns to every (N; v) 2 GAI the unique payo¤ vec-
tor x 2 I(N; v) such that ��(v; x) is lexicographically smaller than ��(v; y) for every y 2
I(N; v), i.e. it minimizes lexicographically the vector of negative excesses

P
i2S xi � v(S)

for all S � N , over all vectors in AI(N; v). When the anti-core is non-empty, ANuc(N; v) 2
AC(N; v). So, for a cost game in GAI , the Anti-Nucleolus lexicographically maximizes the
cost savings v(S)�

P
i2S xi for all S � N .

In the next sections the following proposition, which follows from Oishi and Nakayama

(2009), will appear to be useful. Recall that (N; v) 2 Gvex if and only if (N; vd) 2 Gcave.

Proposition 2.1 For every (N; v) 2 Gvex it holds that

(i) AC(N; vd) = C(N; v),

(ii) ANuc(N; vd) = Nuc(N; v).

Next, we introduce a rooted-tree graph. First, a directed graph or digraph is a pair

(N;D), where N is a set of nodes and the collection of ordered pairs D � f(i; j)ji; j 2
N; i 6= jg is a set of arcs. In this paper, the nodes represent the players in a game, and
therefore we refer to the nodes as players. For digraph (N;D), a sequence of k di¤erent

players (i1; :::; ik) is a (directed) path if (il; il+1) 2 D for l = 1; :::; k�1. For i 2 N , a player
j 2 N is a subordinate of i if there is a path (i1; :::; ik) with i1 = i and ik = j. Player i is a

superior of j if and only if j is a subordinate of i. We denote by FD(i) the set of subordinates

of i, and by PD(i) the set of superiors of i in (N;D). We de�ne F 0D(i) � FD(i) [ fig and
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P 0D(i) � PD(i) [ fig. Also for all S � N , we de�ne FD(S) � [i2S FD(i) and similarly
PD(S) � [i2S PD(i), F 0D(S) � [i2S F 0D(i) and P 0D(S) � [i2S P 0D(i).
A node i 2 N is called a top player in (N;D) if PD(i) = ;. A digraph (N;D) is a

(directed) rooted tree with root i when (i) player i is the unique top player and (ii) for all

j 6= i there is a unique path from i to j.

In the sequel, we denote by D the class of rooted tree graphs and an element of D by

(N; T ). Note that for a rooted tree graph (N; T ) with root i it holds that FT (i) = N n fig
and for every node j 6= i there is precisely one player k 2 PT (j) such that (k; j) 2 T . This
player is called the predecessor of j and denoted by p(j). A player is called a leaf of (N; T )

if FT (i) = ;. We denote by L(T ) the set of all leafs. We say that a tree (N; T ) is linear
if jL(T )j = 1. In this case it holds that for every player k =2 L(T ) there is precisely one
h such that (k; h) 2 T . For a rooted-tree graph (N; T ) with root i, let M � N be the

connected set such that (i) jM j � 2, (ii) i 2M , and (iii) for every j 2M n fig all nodes on
the (unique) directed path from i to j are also inM . We denote by (M;T (M)) the subtree

of (N; T ) restricted to M , and by T the collection of all subtrees (M;T (M)) of (N; T ).

A permission tree game is a triple (N; v; T ) withN � IN a �nite set of players, (N; v) 2 G
a TU-game and (N; T ) 2 D a rooted tree on N . In those games, it is assumed that the

tree represents a hierarchy that imposes restrictions on the forming of coalitions. Solutions

for permission tree games have been discussed in for instance van den Brink, Herings, van

der Laan and Talman (2015) and van den Brink, Dietz, van der Laan and Xu (2017). One

of these solutions is the permission value, based on the so-called conjunctive approach to

permission structures as developed in Gilles, Owen and van den Brink (1992). In this

approach, it is assumed that a coalition is feasible if and only if for every player in the

coalition all its predecessors are also in the coalition.9 The set of feasible coalitions is given

by

�T = fS � N jPT (i) � S for all i 2 S g :

In this paper, we only consider triples (N; v; T ) where the permission structure (N; T ) 2
D is a rooted tree. We denote by GT the collection of all permission tree games. A

(single-valued) solution f on GT assigns a unique payo¤ vector f(N; v; T ) 2 IRN to every
(N; v; T ) 2 GT . For S � N , let �T (S) =

S
R2�T :R�S R be the largest feasible subset

10 of S.

9Other models of allocation on networks are studied by, e.g. Myerson (1977) or Ju (2013), who consider

allocation problems where only connected coalitions in an undirected network can form. Since the root of

the tree is in every feasible coalition, permission structures can also be seen as centered union structures

in Charnes and Littlechild (1975).
10Every coalition having a unique largest feasible subset follows from the fact that �T is union closed,

i.e. for every E;F 2 �T it holds that E [ F 2 �T
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Following Gilles Owen and van den Brink (1992), the induced permission restricted game

of (N; v; T ) is the game (N; rN;v;T ) 2 G given by

rN;v;T (S) = v(�T (S)) for all S � N:

3 A generalized liability problem

In the Restatement of Torts (Second), §12A, the word �damages�is a sum of money awarded

to a person injured by the tort of another. We denote by di the direct damage, which is

measured by money, caused by every tortfeasor i. Note that di is non-negative.

A �generalized liability problem�is de�ned as a joint liability problem with rooted-tree

structure. For convenience, a generalized liability problem is referred to as simply a liability

problem. Let N be the set of tortfeasors. Without loss of generality, player 1 2 N is the top

of root (N; T ). Formally, a liability problem is a triple (N; T; d), where jN j � 2, (N; T ) 2 D
is a rooted tree on N , and d 2 IRN+ is a pro�le of direct damages. We denote by L the class
of all liability problems.

3.1 Types of damages

We de�ne several types of damages. As stated in the Introduction, these damages are

introduced in the legal literature (Peaslee 1934, the Restatement of Torts (Second) 1965,

the Restatement of Torts (Third) 2000).

The total damage of S, denoted by dS, is the sum of the damages of the players in S.

Total damage For S � N , dS �
P

j2S dj.

The cumulative damage of S, denoted by cS, is the sum of the damages of the players in

S and all their superiors.

Cumulative damage For S � N , cS �
P

j2P 0T (S)
dj.

The additional damage of S, denoted by eS, is the sum of all damages that would have

been avoided when none of the members of S exercised a wrongful act. Thus, this damage

is represented as the sum of the damages of the players in S and all their subordinates.

Additional damage For S � N , eS �
P

j2F 0T (S)
dj.

The potential damage of S, denoted by bS, is the sum of all damages that the members of S

cause when they do a wrongful act, and the members outside S do not behave wrongfully.

Potential damage For every subset S � N , bS �
P

j2S:PT (j)�S dj.

11



In the case where the tree is linear and S = fjg for some j 2 N , these four notions of
damages coincide with the notions of Dehez and Ferey (2013), respectively. For convenience

of notation, we denote dS = dj if S = fjg and similarly for the other notions. Note that
dN = cN = eN = bN , and for the root 1, d1 = c1 = b1 and e1 =

P
k2F 0T (1)

dk = dN .

The following example illustrates the di¤erent notions of damages mentioned above.

Example 3.1 Consider six players and rooted-tree (N; T ) with N = f1; 2; 3; 4; 5; 6g and
T = f(1; 2); (2; 3); (2; 4); (1; 5); (5; 6)g, see Figure 2. Table 1 gives the four notions of
damages for two di¤erent sets S. Note that dN =

P
i2N di.
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Figure 2: Rooted tree with six players.

Table 1. Four notions of damages for the tree of Figure 2.
S = f1; 4; 6g S = f2; 6g

Total damage dS d1 + d4 + d6 d2 + d6

Cumulative damage cS d1 + d2 + d4 + d5 + d6 d1 + d2 + d5 + d6

Additional damage eS dN d2 + d3 + d4 + d6

Potential damage bS d1 0

3.2 Liability games

We consider the class of liability games derived from liability problems. For every liability

problem (N; T; d) 2 L, the corresponding lower-bound liability game is the game (N; vL),
where the worth of a coalition S is its potential damage, i.e. for all S � N ,

vL(S) � bS:

In the literature on game theory, the lower-bound liability game is known as a peer-

group game introduced by Brânzei, Fragnelli and Tijs (2002). The peer-group game is

12



derived from the peer-group situation (N; T; d), where cooperation among agents is hierar-

chically structured. Since the class of peer-group games is a subclass of convex games (see

e.g. Brânzei, Fragnelli and Tijs 2002), the lower-bound liability game (N; vL) is convex.

Furthermore the lower-bound liability game (N; vL) is also a permission restricted game

(N; rN;v;T ) of the additive game (N; v) with the characteristic function de�ned as v(S) = dS
for all S � N .11

Based on Property 1.1 (ii), we introduce for every liability problem (N; T; d) 2 L the
corresponding upper-bound liability game12 as the game (N; vU), where the worth of a

coalition S is the additional damage that the agents in S might cause, i.e. for all S � N ,

vU(S) � eS:

The next lemma states that the upper-bound liability game (N; vU) is the dual of the

lower-bound liability game (N; vL).

Lemma 3.2 For every liability problem (N; T; d) 2 L, the upper-bound liability game
(N; vU) is the dual of the lower-bound liability game (N; vL).

Proof. For S � N , we have that vL(S) = bS =
P

j2S:PT (j)�S dj. Now, note that for every

S � N the set of players in S such that all their predecessors are also in S coincides with

the set of players in S that are not subordinates of the players in N n S, i.e.

fj 2 S : PT (j) � Sg = S n FT (N n S):

Since F 0T (N n S) = FT (N n S) [ (N n S), we have S n FT (N n S) = N n F 0T (N n S). Hence
for every S � N we obtain that vL(S) =

P
j2N :j 62F 0T (NnS)

dj and thus

vdL(S) = vL(N)� vL(N n S) =
X
j2N

dj �
X

j2N :j 62F 0T (Nn(NnS))

dj

=
X

j2F 0T (Nn(NnS))

dj =
X

j2F 0T (S)

dj = eS = vU(S);

which completes the proof. �

11The Shapley value of the lower-bound liability game (N; vL) is equal to the permission value of

the permission tree game (N;T; v). The permission value  on GT is the solution that assigns to

every (N; v; T ) 2 GT the Shapley value of the associated permission restricted game, i.e.,  (N; v; T ) =
Sh(N; rN;v;T ) for all (N; v; T ) 2 GT . For the details, see van den Brink and Gilles (1996).
12For a liability problem with linear structure the upper-bound liability game (N; vU ) is a so-called

airport game, see Littlechild and Owen (1973).
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By Lemma 3.2, the fact that (N; vL) is convex implies that (N; vU) is concave. Moreover,

by Lemma 3.2, we have the following proposition. The statement (i) follows from the fact

that the Shapley value is self-dual and the statements (ii) and (iii) follow from applying

Proposition 2.1 to the convex game (N; vL) and its dual (N; vU).13

Proposition 3.3 For every liability problem (N; T; d) 2 L the corresponding games (N; vL)
and (N; vU) satisfy the following statements:

(i) Sh(N; vL) = Sh(N; vU),

(ii) C(N; vL) = AC(N; vU),

(iii) Nuc(N; vL) = ANuc(N; vU).

The statement (i) and (ii) imply that the Shapley value of the lower-bound liability game

belongs to the anti-core of the upper-bound liability game. Thus, for every coalition S

Sh(N; vL) satis�es the upper-bound requirement that
P

i2S Shi(N; vL) � eS. By the same
argument, for every coalition S, Nuc(N; vL) satis�es the upper-bound requirement thatP

i2S Nuci(N; vL) � eS. From the statement (iii) it follows that Nuc(N; vL) lexicographi-

cally maximizes the cost savings vU(S)�
P

i2S xi with respect to the upper-bound liability

game.

3.3 Compensation schemes

Given (N; T; d) 2 L, an allocation for (N; T; d) is a non-negative vector x 2 IRN+ such thatP
i2N xi = dN . A compensation scheme for liability problems is a mapping ' on L that

associates with every problem (N; T; d) 2 L an allocation '(N; T; d) 2 IRN+ .
The Shapley compensation scheme is the mapping Sh on L that associates with every

problem (N; T; d) 2 L, the Shapley value of its corresponding lower-bound liability game
(N; vL):

Sh(N; T; d) � Sh(N; vL):

The Shapley compensation scheme satis�es Property 1.1 (i) of the Introduction since it

satis�es the requirement that for every S � N the total compensation paid by its members

is at least equal to vL(S), being the potential damage of S.14

We de�ne the Nucleolus compensation scheme as the mapping that assigns to every

liability problem (N; T; d) 2 L the Nucleolus of its corresponding lower-bound liability

game (N; vL).

13On the domain of all TU games, a solution f is self-dual if f(v) = f(vd), where v and vd are dual to

each other.
14Notice that Fery and Dehez (2016) investigated the Shapley compensation scheme for linear liability

problems, i.e., (N;T; d) with T = f(1; 2); (2; 3); � � � ; (n� 1; n)g.
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De�nition 3.4 The Nucleolus compensation scheme is the mapping Nuc on L that as-

sociates with every problem (N; T; d) 2 L the Nucleolus of its corresponding lower-bound
liability game (N; vL):

Nuc(N; T; d) � Nuc(N; vL):

Since the Nucleolus of convex games is in its core, the Nucleolus compensation scheme

satis�es the requirement that for every S � N the total compensation paid by its members

is at least equal to the potential damage of S. Thus, the Nucleolus compensation scheme

satis�es Property 1.1 (i) of the Introduction. Nevertheless, we now run into a di¢ culty

about the interpretation of the core and the Nucleolus. Typically it is considered to be

desirable that a payo¤ vector is in the core of the game. This is called core-stability,

saying that every coalition S gets at least its own worth v(S) and so no member of S

has an incentive to deviate from the grand coalition N . However, this holds for pro�t

games where v(S) is the worth that the members of S can earn by themselves without

cooperating with the others, and the entries of x yield payo¤s that are paid to the players.

In contrast to this usual situation, the Nucleolus of the lower-bound liability game gives a

vector of compensations to be paid by the tortfeasors. The tortfeasors are not looking for

core stability, on the contrary they want to pay as little as possible. Therefore, the lower-

bound liability game should not be considered as a game that is played by the tortfeasors

themselves.

An appropriate interpretation of the lower-bound liability game is that this game is a

model to help the court to determine the compensations to be paid to the injured party.

According to this interpretation, the Nucleolus compensation scheme determines how much

every coalition has to pay in addition to its lower bound vL(S). For the Shapley value,

these additional payments are determined by the marginal contributions of the players.15

In contrast, the Nucleolus is determined by the excesses of the coalitions. However, for the

lower-bound liability game (N; vL) the excess e(S; x; vL) is now a measure of �satisfaction�

of S at x, because the bigger the excess is, the lower the total amount of compensation that

the members of S have to pay. So, while in a game where the payo¤vector yields payments

to the players the Nucleolus minimizes lexicographically the vector of dissatisfactions, in

the lower-bound liability game the Nucleolus minimizes lexicographically the vector of

satisfactions. This is counterintuitive. Even if we consider the lower-bound liability game

as a model used by the court to determine the compensations, there is no a priori reason

to do so.
15Since the marginal contributions of a player do not depend on the damages of his superiors in the

tree, this also implies that the Shapley value satis�es the property that the compensation to be paid by a

tortfeasor does not depend on the damages of its superiors, see Ferey and Dehez (2016).
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Nevertheless, the Nucleolus compensation scheme is justi�ed as a reasonable solution

when we consider that every tortfeasor should pay at most the additional damage that

he would have caused as stated in Property 1.1 (ii) of the Introduction. When the court

decides to implement Nuc(N; vL), or equivalently ANuc(N; vU) (by Proposition 3.3), the

smallest cost saving over all coalitions S is made as large as possible, then the second

smallest is made as large as possible, then the third smallest, and so on. This gives us a

justi�cation of the Nucleolus compensation scheme. This is because, as mentioned in the

Introduction, the Nucleolus lexicographically minimizes the corresponding �dissatisfaction�

of injuring parties, and thus it is likely that the injured party can receive compensation as

soon as possible without facing with injuring parties �nal appeal to the court.

Thus, thanks to duality of lower-bound liability game and the upper-bound liability

game, we obtain the following corollary. In fact, this corollary is immediately from Propo-

sition 3.4-(iii) together with De�nition 3.2.

Corollary 3.5 The Nucleolus compensation scheme is the mapping ANuc on L that asso-
ciates with every problem (N; T; d) 2 L the Anti-Nucleolus of its corresponding upper-bound
liability game (N; vU):

Nuc(N; T; d) = ANuc(N; vU):

The corollary gives us two merits. Firstly, we can regard the Nucleolus compensation

scheme as a cost sharing scheme that is naturally interpreted in the context of the lexi-

cographical minimization of dissatisfactions among the tortfeasors. Secondly, as explained

below, we can apply the algorithm proposed by Brânzei, Solymosi and Tijis (2005) to

computation of the cost sharing scheme.

3.4 Computation of compensations

We now consider the computation of the compensations for both the Shapley value and the

Nucleolus. The Shapley value is easy to compute for liability games. Recall that (N; vL) is

the peer-group game associated to the peer-group situation (N; T; d) and also that it is the

permission restricted game (N; rN;v;T ) of the additive game (N; v) with its characteristic

function de�ned as v(S) = dS for all S � N . For these games, it is well-known that the

Shapley value distributes the damage di of a player i 2 N equally among player i and all

its superiors in (N; T ). This gives the following expression for the compensation to be paid

by every tortfeasor j 2 N according to the Shapley compensation scheme:

Shj(N; T; d) =
X

i2F 0T (j)

di
jP 0T (i)j

: (3.1)
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So, when applying the Shapley value the compensation to be paid by tortfeasor j is the

sum of all his shares in the damages of himself and his subordinates.16

In general, on the other hand, there is no explicit formula available for the Nucleolus,

but the Nucleolus compensations can be computed by the algorithm given in Brânzei,

Solymosi and Tijs (2005) for peer-group games. For a subtree (M;T (M)) 2 T (see Section
2), let (M;T (M); a), a 2 IRM+ , be a reduced liability problem on M . We de�ne for every

j 2M n f1g,

� j(M;T (M); a) �

P
k2F 0

T (M)
(j) ak

jF 0T (M)(j)j+ 1
:

The Nucleolus compensation scheme is obtained by the following algorithm, where x =

Nuc(N; T; d) � Nuc(N; vL). Recall that p(j) is the predecessor of j in (N; T ) and so also
in every subtree (M;T (M)) containing j.

Nucleolus algorithm (Nuc algorithm):
Step 0: Set M = N and a = d.

Step 1: Find a j 2M n f1g such that � j(M;T (M); a) = minm2Mnf1g �m(M;T (M); a).

Step 2: For every k 2 F 0T (M)(j), set xk = � j(M;T (M); a). If jM n F 0T (M)(j)j � 2, go to

Step 3. Otherwise, set x1 = dN �
P

k2Nnf1g xk and stop.

Step 3: Set M �M n F 0T (M)(j) and set ap(j) � ap(j) + xj. Return to Step 1.

Note that in Step 2, if jM n F 0T (M)(j)j = 1, then M n F 0T (M)(j) = f1g and top agent 1
gets what is left after all other agents j 6= 1 received their xj. In the next Example, we

will illustrate the above procedure.

Example 3.6 Let (N; T; d) be the liability problem with rooted tree as given in Figure 2

and with the pro�le of direct damages given by d = (0; 12; 40; 36; 12; 30).

(1) The Shapley value: Using formula (3.1) we have the following computations for

the outcome of the Shapley compensation scheme, starting with the leafs: Sh3(N; T; d) =
d3
3
= 40

3
, Sh4(N; T; d) = d4

3
= 12, Sh6(N; T; d) = d6

3
= 10. Next we obtain Sh2(N; T; d) =

d2
2
+ Sh3(N; T; d) + Sh4(N; T; d) = 6 + 40

3
+ 12 = 94

3
, Sh5(N; T; d) = d5

2
+ Sh6(N; T; d) =

6+10 = 16 and �nally Sh1(N; T; d) = d1+Sh2(N; T; d)+Sh5(N; T; d) = 0+ 94
3
+16 = 142

3
.

Thus Sh(N; T; d) = (142
3
; 94
3
; 40
3
; 12; 16; 10).

16This compensation can also be obtained as the so-called permission value as axiomatized in van den

Brink and Gilles (1996) for games with a permission structure, where the game is the above mentioned

additive game where the worth of a coalition is its total damage, and the hierarchy (permission structure)

is the rooted tee T .
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(2) The Nucleolus: In the same liability problem mentioned above, let us compute the

outcome of the Nucleolus compensation scheme using the algorithm. Let x = Nuc(N; T; d).

The Nuc algorithm performs as follows.

Step 0: Set M = N and a = d:

Iteration 1:

Step 1: minf30
2
; 12+30

3
; 36
2
; 40
2
; 12+40+36

4
g = 14 = � 5(M;T (M); a):

Step 2: x5 = x6 = 14.

Step 3: Set M = f1; 2; 3; 4g and a = (d1 + 14; d2; d3; d4) = (14; 12; 40; 36).
Iteration 2:

Step 1: minf36
2
; 40
2
; 12+40+36

4
g = 18 = � 4(M;T (M); a):

Step 2: x4 = 18.

Step 3: Set M = f1; 2; 3g and a = (d1 + 14; d2 + 18; d3) = (14; 30; 40).
Iteration 3:

Step 1: minf40
2
; 30+40

3
g = 20 = � 3(M;T (M); a).

Step 2: x3 = 20.

Step 3: Set M = f1; 2g and a = (d1 + 14; d2 + 18 + 20) = (14; 50).
Iteration 4:

Step 1: � 2(M;T (M); a) = 50
2
= 25.

Step 2: x2 = 25 and x1 = dN �
P

k2Nnf1g xk = 39. Stop.

We have found that Nuc(N; T; d) = x = (39; 25; 20; 18; 14; 14).

From the formula (3.1) it follows immediately that the Shapley compensation scheme

satis�es a strong monotonicity property that every player j 2 N n L(T ) has to pay at
least as much as any of his subordinates, and strictly more when dj > 0. The �rst part of

this property also holds for the Nucleolus compensation scheme, but compensations can

be equal when dj > 0.17

Lemma 3.7 Structural Monotonicity of the Nucleolus compensation scheme
For every liability problem (N; T; d) 2 L, every j 2 N n L(T ), and every k 2 FT (j),

Nucj(N; T; d) � Nuck(N; T; d):

Proof. The proof follows from the Nuc algorithm. We have three steps.

Step 1 In the �rst iteration, the Nuc algorithm starts with (N; T; d). Fix an arbi-

trary k 2 N n f1g such that � k(N; T; d) = minj2Nnf1g � j(N; T; d). Then Nuci(N; T; d) =

� i(N; T; d) for every i 2 F 0T (k) and so the property holds for k and all his subordinates. In
17This property is used in van den Brink and Gilles (1996) to axiomatize the conjunctive (Shapley)

permission value for permission restricted games.
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the second iteration we haveM = NnF 0T (k) and the reduced liability problem (M;T (M); a)
with ap(k) = dp(k) + � k(N; T; d), and aq = dq for every q 2 M n fp(k)g. We show that the
minimal of � j(M;T (M); a) in the second iteration is at least equal to � k(N; T; d) in the

�rst iteration, that is, minh2Mnf1g �h(M;T (M); a) � � k(N; T; d). For simplicity of nota-

tion, let Al = � l(N; T; d) and nl = jF 0T (l)j for every l 2 N n f1g. Our target is to show
that for every h 2M n f1g �h(M;T (M); a) � Ak. Firstly, consider the case where a player
h 2M nf1g is neither a subordinate of k in (N; T; d) nor a superior of k in (N; T; d). Then
�h(M;T (M); a) = �h(N; T; d) = Ah � Ak since Ak is minimal in the �rst iteration. Sec-

ondly, consider the case where a player h 2M nf1g is a superior of k in (N; T; d). Now note
that in the �rst iteration nk players (k and its subordinates) have left and that all these

players paid compensation Ak, while ap(k) = dp(k) + Ak. The player h is either p(k) itself

or a superior of p(k). Furthermore, note that in the �rst iteration Ah = 1
nh+1

P
i2F 0T (h)

ai.

From this observation and the fact that in the �rst iteration Ah � Ak it follows that

�h(M;T (M); a) =

P
i2F 0T (h)nFT (k)

ai

nh � nk + 1

=
(nh + 1)Ah � nkAk

nh � nk + 1

� (nh + 1)Ah � nkAh
nh � nk + 1

= Ah � Ak:

Step 2 For any arbitrary liability problem (N; T; d) 2 L where d1 = 0, we show that
dN
n
� minj2Nnf1g � j(N; T; d) by induction on jL(T )j.

Induction basis. For jL(T )j = 1, the claim holds by the Nuc algorithm.

Induction hypothesis. Suppose that the claim holds for jL(T )j � t and t � 1.

Induction step. We show that the claim holds for jL(T )j = t+ 1.

Let N be the set of agents where jL(T )j = t+1, and let (N; T; d) be the corresponding
liability problem where d1 = 0. Let R = fr 2 N j p(r) = 1g, that is, the predecessor
of each agent in R is the top player 1. Let (N r; T r) be the subtree on which there are

the subordinates of r, the top player 1, and r itself. Note that jL(T r)j � t. For every

r 2 R, we denote by (N r; T r; dr) where dr1 = d1 = 0 the reduced liability problem derived

from the subtree (N r; T r). Fix an arbitrary kr 2 N r n f1g such that � kr(N r; T r; dr) =

minj2Nrnf1g � j(N
r; T r; dr). By the induction hypothesis,

P
i2Nr di � jN rj� k(N r; T r; dr).

Note that
P

r2R jNrj = jN j+r�1 � jN j. Furthermore, we have minr2Rf� kr(N r; T r; dr)g =
minj2Nnf1g � j(N; T; d) since fN r nf1ggr2R is a partition of N nf1g. Again, by the induction
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hypothesis,

dN =
X
i2N

di =
X
r2R

X
i2Nr

di

�
X
r2R

jNrj� kr(N r; T r; dr) � jN jmin
r2R
f� kr(N r; T r; dr)g

= n min
j2Nnf1g

� j(N; T; d);

which is the desired claim.

Step 3 Following the Nuc algorithm, continue the same argument as in Step 1 until
jM nF 0T (M)(j)j = 1. We obtain that the assigned payo¤s to players, except for the top player
1, are non-increasing in the iterations. For every liability problem (N; T; d) 2 L, let ~d1 = 0
and ~dj = dj for every j 6= 1. It is clear that the lower bound liability game derived from
(N; T; ~d) is the zero-normalization of the lower bound liability game derived from (N; T; d).

By the covariance property of the Nucleolus18, Nuc1(N; T; d) = d1+Nuc1(N; T; ~d). By steps

1 and 2 together with the Nuc algorithm,

Nuc1(N; T; d) = d1 +Nuc1(N; T; ~d) � d1 + Ak;

which completes the proof. �

4 Legal notion of causes

In this section, we explain legal notion of �proximate causes�and �intervening causes�. In

Black�s Law Dictionary (10th Edition), the de�nition of these causes is as follows:

Proximate cause

1. A cause that is legally su¢ cient to result in liability; an act or omission that

is considered in law to result in a consequence, so that liability can be imposed

on the actor.

2. A cause that directly produces an event and without which the event would

not have occurred.

Intervening cause
18A solution f on a subclass G0 of G satis�es the covariance property if for every (N; v); (N;w) 2 G0,

� > 0, � 2 IRN , and w = �v + �, we have fi(N;w) = �fi(N; v) + �i for all i 2 N .
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An event that comes between the initial event in a sequence and the end result,

thereby altering the natural course of events that might have connected a wrong-

ful act to an injury; esp., an independent agency�s act that destroys or severely

weakens the causal connection between the defendant�s negligent act and the

wrongful injury, this independent act being the immediate cause, so that there

typically can be no recovery from the defendant.

These causes can be found in the underlying causal structure of joint liability problems

in practice. For instance, in Hale v. Brown (287 Kan. 320, 324, 197 P.3d438, 441, 2008),

the supreme court of the state of Kansas (the court of Kansas for short) adjudicated on

the case of a pileup among three drivers. The syllabus of the court of Kansas says that

�the proximate cause of an injury is the cause that in a natural and continuous

sequence, unbroken by any superseding cause, both produced the injury and was

necessary for the injury.�19

�(Because) in considering proximate cause we retain the principle that an in-

tervening cause component breaks the connection between the initial negligence

act and the harm caused,� � ��

From these legal observations, we derive the proximate cause associated with the ad-

ditional damage of i. For every liability problem (N; T; d) 2 L, the proximate cause
associated with the additional damage of i is de�ned as the set of all the superiors of

agent i, denoted by PT (i). This is because the additional damage of i, ei is conceptually

separated from PT (i), which can be regarded as the cause that in a natural and continuous

sequence in the de�nition of ei.

On the other hand, for every liability problem (N; T; d) 2 L, the de�nition of intervening
causes associated with ei may be more complicated than that of the proximate cause. In this

paper, we consider the situation where intervening causes may be �divisible�or �indivisible�

by using the legal notion of �strength of relative commonality.� We illustrate intervening

causes by using a linear liability problem. Imagine (N; T; d), where N = f1; 2; 3; 4g, d =
(d1; d2; d3; d4), and T = f(1; 2); (2; 3); (3; 4)g. The underlying situation of this liability
problem is a pileup among four drivers. Each driver drove his/her car wrongfully, and the

19In Black�s Law Dictionary (10th Edition), the de�nition of �superseding cause�is as follows: an inter-

vening act or force that the law considers su¢ cient to override the cause for which the original tortfeasor

was responsible, thereby exonerating that tortfeasor from liability.
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sequence of wrongful driving has caused an injury. The intervening cause of additional

damage of driver 4 is f4g. This is because the wrongful driving caused by driver 4 is
conceptually separated from a continuous sequence of wrongful driving departed from the

origin of injury. On the other hand, the intervening cause of additional damage of driver 3

has several cases: f3; 4g or ff3g; f4gg. This is because in tort law intervening causes can
be divisible or indivisible by strength of �relative commonality�. Imagine that drivers 3 and

4 are friends who enjoy beer together before the pileup. In this case, the causes of wrongful

acts by 3 and 4 may have relative commonality, so f3; 4g may be indivisible intervening
cause. If relative commonality is not observed, ff3g; f4gg is divisible intervening cause.20

From the illustrative example mentioned above, we derive the de�nition of the inter-

vening causes associated with the additional damage of i, ei. For every liability prob-

lem (N; T; d) 2 L, the intervening cause associated with ei is de�ned as a partition of
F 0T (i), denoted by F0

T (i).
21 The number of jF0

T (i)j means strength of relative commonal-
ity. If jF0

T (i)j = jF 0T (i)j, then the weakest strength of relative commonality is applied. If
jF0
T (i)j = 1, then the greatest strength of relative commonality is applied.

5 Axioms

In this section, we propose three axioms of a compensation scheme for liability problems:

lower and upper bounds properties, and a consistency property of compensation for the

injury. As mentioned in the Introduction, these properties are inspired from the notions of

tort law and case system.

5.1 Bounds

Before our statement on the �rst two axioms, we explain how the idea underlying these

axioms is related to legal observations.

In this paper, we assume that the order of a sequence of wrongful acts (i.e. tree-

structure of causes) is determined but the causal weights among the associated causes

cannot be determined. Therefore courts need another criterion for compensation instead

of the weight sharing criterion. In this paper, we adopt a �per-capita criterion�. That is, the

criterion requires that ei should be divided equally among the proximate cause associated

with ei and the intervening causes associated with ei. The per-capita criterion is inspired

20In fact, the notion of relative commonality was applied to the case of joint liability problems for

emission regulation claim on the Nishi Yodo Gawa River, Osaka, Japan in 1995.
21Subsets of F 0T (i), �1; �2; � � � ; �m consists of a partition of F 0T (i) if for every i 6= j, �i \ �j = ; and

�1 [ �2 [ � � � [ �m = F 0T (i).
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from the stylized fact that in Japan courts employed the notion of per capita criterion in

joint liability problems before 1990�s.

A justi�cation of lower bounds of individual compensations stems from a consideration

in an article written by Chief Justice Peaslee of New Hampshire (Peaslee 1934). As stated

in Prosser et al. (1984), Peaslee pointed out that in the situation where sequentially

wrongful acts by tortfeasors occur, a judge can allow for reduction of every tortfeasor�s

liability. That is, when the cause of an accident by tortfeasor A, who is the predecessor of

B, reduces the blame of tortfeasor B, the judge may allow for reduction of tortfeasor B�s

liability.22 This consideration by Peaslee implies that a court may take individual lower

bounds of compensations into consideration for determining compensation for the injury.

On the other hand, a justi�cation of the individual upper bounds axiom stems from

the stylized fact that in the real world the notion of �limited liability�is widely employed

and it determines upper bounds of compensation for injury.23

Next, we state the lower and upper bounds axioms formally. Firstly, we formalize the

lower bounds axiom of individual compensations. We assume the case of torts where the

causal weights among PT (i) and the intervening causes in F0
T (i) cannot be determined, and

therefore the per-capita criterion is employed.24

The per-capita contribution � i(N; T; d) is given by � 1(N; T; d) = e1
jN j(=

dN
n
) and for

every i 2 N n f1g

� i(N; T; d) =
ei

jF0
T (i)j+ 1

:

The lower-bound axiom requires that every tortfeasor i 2 N should pay at least as much

as the smallest per-capita contribution minj2N � j(N; T; d), where jF0
T (i)j = jF 0T (i)j. This

case is the case where the weakest strength of relative commonality is observed.

A justi�cation of the min-operator is as follows. As stated in Peaslee (1934), the judge

can allow for reduction of every tortfeasor�s liability. The greatest reduction of every

tortfeasor i�s liability is to set bi (i.e. i�s potential damage) as i�s payment (Property 1.1-

(i)). However, since the potential damage of every tortfeasor i 2 N n f1g is zero, applying
the notion of potential damages to reduction of every tortfeasor�s liability makes no sense in

practice. Instead, it is natural to consider the second greatest reduction of every tortfeasor

22Peaslee (1934) deals with the notion of potential damage in this context. On the other hand, we deal

with the notion of additional damage in the same context.
23Following Black�s Law Dictionary (the tenth edition), the limited liability is liability restricted by law

or contact.
24The per-capita criterion is employed more often in the context of economic problems, for instance, Ni

and Wang (2007) use a per capita criterion to introduce the upstream equal responsibility sharing method

for polluted river problems. Alcarde-Unzu, Gómez-Rúa, and Molis (2015) also use a per-capita criterion

under a di¤erent environment of polluted rivers.
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i�s liability is to set minj2N � j(N; T; d) as his payment. This is because the smallest per

capita contribution is considered as a guarantee of every injuring party�s compensation for

the total damage. In this sense, this axiom is a very weak lower bound property.

Uniform Lower Bound (ULB) A compensation scheme ' on the class of liability prob-
lems L satis�es the uniform lower bound if for every (N; T; d) 2 L and every i 2 N ,

'i(N; T; d) � min
j2N

� j(N; T; d):

In Example 3.6 it requires that every tortfeasor should pay at least the per capita

contribution of agent 5, being 14.

Next, we formalize the upper bounds axiom of individual compensations. The upper-

bound axiom requires that every tortfeasor i 2 N should pay at most as much as the

per-capita contribution � i(N; T; d) = ei
jF0T (i)j+1

, where jF0
T (i)j = 1. This case is the case

where the greatest strength of relative commonality is observed.

Individual Upper Bounds (IUB) A compensation scheme ' on the class of liability

problems L satis�es the individual upper bounds if for every (N; T; d) 2 L and every

i 2 N n f1g, '1(N; T; d) � dN , and

'i(N; T; d) �
1

2
ei:

In Example 3.6 the vector of additional damages is given by e = (e1; e2; e3; e4; e5) = (130,

88, 40, 36, 42, 30), so the upper bounds for agents 1 to 6 are, respectively, 130, 44, 20, 18,

21 and 15.

5.2 Consistency

The last axiom is a consistency property derived from case system. Case system is a legal

system that requires that for every legal problem a rule should provide an outcome that is

consistent with the outcome that the same procedure generates for a di¤erent, but similar

legal problem. In fact, case system is employed in the UK and USA courts (see for instance

Ito 1978).

In this paper, the consistency axiom, referred to as �causal consistency�, is introduced.

Before going to the formal statement of this consistency, we explain the property by using

a simple example. Again, imagine (N; T; d), where N = f1; 2; 3; 4g, d = (d1; d2; d3; d4), and
T = f(1; 2); (2; 3); (3; 4)g. For instance, imagine remove of intervening causes associated
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with e3, F0
T (3) (i.e. F0

T (3) = f3; 4g or F0
T (3) = ff3g; f4gg). Since the intervening causes

associated with e3 are a cause separated from the proximate cause f1; 2g, the outcome of
agents 1 and 2 chosen by a compensation scheme should be invariant. Causal consistency

requires that the outcome chosen by a compensation scheme should be invariant under the

remove of intervening causes of every additional damage. In this sense, causal consistency

guarantees legal stability.

In the four-persons example mentioned above, under the departure of intervening causes

associated with e2, one may wonder why the departure of agents 2 and 4 is not considered.

We can answer for this question by two ways.

Firstly, under the departure of agents 2 and 4, the remaining agents 1 and 3 are not

the agents who make the proximate cause associated with e2. As mentioned before, the

proximate cause is de�ned as a cause separated from the intervening causes. Causal consis-

tency is interpreted as a consistency property where the outcome of the agents who make

the proximate cause should be independent of the departure of the intervening causes.

Therefore, the departure of agents 2 and 4 is not considered.

Secondly, the remaining agents 1 and 3 have no causal relation. This is because the

proximate cause associated with the additional damage of agent 3 must include the wrongful

acts by both agents 1 and 2. However, agent 2 disappears as the remaining agent. Causal

consistency is also interpreted as a consistency property of the reduced liability problem

where the remaining agents have causal relation. Therefore, the departure of agents 2 and

4 is not considered.

Next, we state causal consistency formally. Given a compensation scheme ', consider a

liability problem (N; T; d) 2 L and an additional damage ej for every j 2 Nnf1g. Let F0
T (j)

be the set of intervening causes associated with ej. Imagine that all the agents who make the

set of intervening causes F0
T (j) pay their compensation according to a compensation scheme

'(N; T; d), and the remaining agents agree with the departure of them. The remaining

direct-damages of the departing agents are aggregated as
P

k2F 0T (j)
(dk � 'k(N; T; d)). The

amount of the aggregated damages is added to the direct damage caused by j�s predecessor

p(j). As a result, the (modi�ed) direct damage caused by agent p(j) is adjusted to dp(j) +P
k2F 0T (j)

(dk � 'k(N; T; d)).
The reduced liability problem is given by (N n F 0T (j); T (N n F 0T (j)); dj), where (i) N n

F 0T (j) is the set of the remaining agents under the departure of the agents who make the

set of intervening causes F0
T (j), (ii) T (N nF 0T (j)) is the subtree of T on N nF 0T (j), and (iii)

dj 2 IRjNnF 0T (j)j is the vector of damages given by djp(j) � dp(j)+
P

k2F 0T (j)
(dk � 'k(N; T; d))

and djm � dm for every m 6= p(j) in N n F 0T (j). Roughly speaking, the reduced liability
problem is a liability problem under the departure of intervening causes of every additional

damage. Causal consistency requires that the outcome chosen by a compensation scheme
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should be invariant for every reduced liability problem. Therefore, the remaining agents

have no incentive to make the �nal appeal to the court.

Causal consistency (Causal Cons) A compensation scheme ' on the class of liability
problems L satis�es causal consistency if for every (N; T; d) 2 L, i 2 L(T ), j 2 P 0T (i)nf1g,
dj 2 IRjNnF 0T (j)j such that djp(j) � dp(j) +

P
k2F 0T (j)

(dk � 'k(N; T; d)) and djm � dm for every
m 6= p(j) in N n F 0T (j), and every l 2 N n F 0T (j)

'l(N n F 0T (j); T (N n F 0T (j)); dj) = 'l(N; T; d):

6 Characterization of the Nucleolus compensation scheme

In this section, we show that the Nucleolus compensation scheme is the unique compen-

sation scheme on the class of liability problems L that satis�es ULB, IUB, and Causal
Cons.
The following lemma shows that inULB the smallest per-capita contribution is reduced

to minj2Nnf1g � j(N; T; d). By the argument appearing in Step 2 of the proof of Lemma

3.7, it is clear that the smallest per-capita contribution minj2N � j(N; T; d) is replaced by

minj2Nnf1g � j(N; T; d). Therefore we omit the proof.

Lemma 6.1 A compensation scheme ' on the class of liability problems L satis�es the
uniform lower bound if and only if for every (N; T; d) 2 L and every i 2 N ,

'i(N; T; d) � min
j2Nnf1g

� j(N; T; d):

The following main result says that there is a unique compensation scheme supported

by tort law bounds on the compensations (ULB and IUB) and a type of case-system
consistency (Causal Cons). This compensation scheme assigns to every liability problem
the Rawlsian outcome given by the Nucleolus.

Theorem 6.2 A compensation scheme ' on the class L of liability problems satis�es uni-
form lower bound, individual upper bounds, and causal consistency if and only if '(N; T; d) =

Nuc(N; T; d).

Proof. By Lemma A.3 (see Appendix A), it is clear that if a compensation scheme

satis�es ULB, IUB, and Causal Cons, then the compensation scheme is the Nucleolus
compensation scheme.

Conversely, we show that the Nucleolus compensation scheme satis�es ULB, IUB and
Causal Cons. Firstly, from Lemma 3.7 and Step 1 of the Nuc algorithm, it follows
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that the Nucleolus compensation scheme satis�es that for every (N; T; d) 2 L and every
i 2 N , 'i(N; T; d) � minj2Nnf1g � j(N; T; d), which is equivalent toULB by Lemma 6.1. For
jN j = 2, it follows by calculation that the Nucleolus compensation scheme satis�es Causal
Cons. For jN j � 3 and every i 2 L(T ), let N 0 = N nfig, T (N 0) be the subtree of T on N 0,

and d0 2 IRN 0
be such that d0j = dj for j 2 N 0 n fp(i)g and d0p(i) = dp(i)+ di�Nuci(N; T; d).

By the same argument as in the proof of Lemma A.3 (see Appendix A), the lower-bound

liability game (N 0; v0L) derived from the reduced liability problem (N 0; T (N 0); d0) is the

Davis-Maschler reduced game25 of (N; vL) on N 0 with respect to Nuc(N; T; d). It follows

by this observation that for jN j � 3 the Nucleolus compensation scheme satis�es Causal
Cons. By the Nuc algorithm, it is clear that the Nucleolus compensation scheme satis�es
IUB applied to only the leafs. From the fact that the Nucleolus compensation scheme

satis�es Causal Cons and IUB applied to only the leafs, it follows by Lemma A.2 (see

Appendix A) that IUB is satis�ed. �

We check logical independence of the three axioms.

� Let '1 be the compensation scheme given by '1i (N; T; d) = minj2N � j(N; T; d) and

'11(N; T; d) = dN �
P

i6=1 '
1
i (N; T; d). Then '

1 satis�es ULB and IUB, but not
Causal Cons.

� Let '2 be the compensation scheme obtained by applying the equal division solution,
which is axiomatized for TU games (see for instance van den Brink 2007, and Casajus

and Huettner 2014), given by '2i (N; T; d) =
vL(N)
jN j = dN

jN j for every i 2 N and every

(N; T; d) 2 L. Then '2 satis�es ULB and Causal Cons, but not IUB.

� Let '3 be the Shapley compensation scheme. Then '3 satis�es IUB and Causal
Cons (see Katsev 2009, Theorem 6.3.1), but not ULB.

7 Comparison with the Shapley compensation scheme

As mentioned in Section 3, the class of lower-bound liability games is equivalent to the

class of peer-group games. On the class of peer-group games, Katsev (2009, Theorem 6.3.5)

provides a characterization of the Shapley value, namely the Shapley value is the unique

solution that satis�es e¢ ciency, leaf consistency, weak veto property, top monotonicity and

independence of non-subordinates.26 All these �ve axioms are logically independent. The

25For the de�nition of the Davis-Maschler reduced game, see Appendix A.
26Ferey and Dehez (2016, Proposition 1) axiomatized the Shapley value on the class of lower-bound

liability games derived from liability problems with line-tree structure. In this axiomatization, leaf con-

sistency, weak veto property and top monotonicity are replaced by the single axiom of zero immediate
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weak veto property states that player i pays at least the same as any other player when

dj = 0 for every j 6= i. Top monotonicity states that top player 1 pays at least the same
amount as any other player. Independence of non-subordinates states that if the damage

of only one player i changes, then the compensations to be paid by the subordinates of i

do not change. From Katsev�s axiomatization of the Shapley value on the class of peer-

group games, it follows immediately that on the class of liability problems the Shapley

compensation scheme is the unique compensation scheme that satis�es leaf consistency,

the weak veto property, top monotonicity and independence of non-subordinates.

We are now ready to compare the Shapley compensation scheme and the Nucleolus

compensation scheme by axioms involved in their axiomatizations. Let us consider the

list of properties involved in axiomatization of the Shapley and Nucleolus compensation

schemes appearing in Katsev (2009, Theorem 6.3.5) and our paper. The Shapley com-

pensation scheme satis�es all the properties appearing in the list except for uniform lower

bound, and the Nucleolus compensation scheme satis�es all the properties appearing in

the list except for independence of non-subordinates. Thus, by comparing axioms involved

in the axiomatization of the Shapley and Nucleolus compensation schemes, the di¤erence

between the two compensation is uncovered. Furthermore, the di¤erence between the out-

comes chosen by the two compensation schemes might be big even in liability problems

with line-tree structure: Let n be a leaf of a line-tree with n tortfeasors. By the equation

(3.1), leaf n pays dn
n
as the outcome chosen by the Shapley compensation scheme. On the

other hand, when dn is relatively small compared to the damages of leaf n�s superiors, leaf

n might pay dn
2
as the outcome chosen by the Nucleolus compensation scheme. When dn is

relatively large compared to the damages of leaf n�s superiors, leaf n might pay dn
n
as the

outcome chosen by the Nucleolus compensation scheme. Therefore, while leaf n is always

held responsible for a share 1
n
of its own damage as the outcome chosen by the Shapley

compensation scheme, he is held responsible for a share, which might be taken from 1
n
to

1
2
, of its own damage as the outcome chosen by the Nucleolus compensation scheme.

8 Concluding remarks

In this paper, we axiomatized the Nucleolus compensation scheme as a compensation

scheme for liability problems, where causation of the cumulative injury results from mul-

tiple sequences of wrongful acts taken by di¤erent injuring-parties. It appears that the

Nucleolus compensation scheme of a liability problem can be simply computed by using

an algorithm for the Nucleolus of a corresponding liability game. Three axioms involved in

damage, saying that a player i pays the same as its predecessor p(i) if the damage of the predecessor is

equal to zero.
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the axiomatization of the Nucleolus compensation scheme are introduced: a uniform lower

bound, an individual upper bound and an axiom on case-system consistency. The three

axioms are derived from stylized facts concerning tort law and case system in practice.

The outcome chosen by the Nucleolus compensation scheme lexicographically minimizes

the corresponding dissatisfaction of injuring parties in the sense of cost savings. So, it is

likely that the injured party can receive compensation as soon as possible without facing

with injuring parties��nal appeal to the court. This is a very appealing property of the

Nucleolus compensation scheme.

We conclude by discussing what happens when the population of the tortfeasors is

increasing. Suppose that a new tortfeasor arrives at the end of a branch of the tree for

a liability problem, so he is added as a new leaf to one of the leafs of the existing tree.

One may wonder whether every original tortfeasor pays in the new situation at least the

same as in the original situation. If the answer for this question is negative, then it might

be that some of the original tortfeasors have an incentive to increase the population of

the tortfeasors, which leads to an increase of the total damage. From this aspect, it is

appropriate to require that a compensation scheme satis�es leaf population monotonicity,

stating that when a new tortfeasor arrives, in the new situation every original tortfeasor

pays at least the same as in the original situation. If this property is satis�ed, then no

original tortfeasor has an incentive to increase the population of the tortfeasors.

From equation (3.1) it follows immediately that the Shapley compensation scheme

satis�es the leaf population property. When a new tortfeasor arrives, then his (addi-

tional) damage is equally shared among himself and his superiors with no e¤ect on how

the other damages are shared. The Nucleolus compensation scheme satisfying leaf popula-

tion monotonicity follows from a result in Katsev (2009, Theorem 6.4.4), who shows that

when d and d0 are such that d0i � di for every i 2 N , then for the Nucleolus compensation
scheme every tortfeasor pays at d0 at least the same as at d. So, for a given tree with a

�xed set of tortfeasors, the compensations to be paid by the tortfeasors are non-decreasing

in the damages.27 Now, suppose that a new tortfeasor is added. Then, according to the

Nucleolus compensation scheme this tortfeasor pays at most half of his damage and leaf

consistency says that the others have to pay according to the original situation, but with

the damage of the predecessor of the new leaf replaced by the sum of his own damage and

the remaining part of the damage of the new tortfeasor. So, the new situation reduces to

the old situation, but with higher damage for the predecessor of the new leaf. So, by the

result of Katsev (2009, Theorem 6.4.4) it follows that every original tortfeasor pays at least

the same as before. Therefore, the Nucleolus compensation scheme satis�es leaf popula-

27In the existing literature, this monotonicity is known as resource monotonicity, but here the resources

are the damages. For the details of resource monotonicity, see for instance Thomson (2011).
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tion monotonicity. It might be interesting to study the class of compensation schemes that

satisfy leaf population monotonicity, uniform lower bound, and individual upper bounds,

which we leave for future research.
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Appendix A

In this appendix, we show several lemmas for the proof of Theorem 6.2. Firstly, we intro-

duce a weak version of Causal Cons in the sense that the departure of intervening causes
is restricted to that of the unique intervening cause of ei, where i 2 L(T ).

Leaf Consistency (Leaf Cons) A compensation scheme ' on the class of liability prob-
lems L satis�es leaf consistency if for every (N; T; d) 2 L, every i 2 L(T ) and every

j 2 N n fig

'j(N n fig; T (N n fig); di) = 'j(N; T; d):

The following lemma shows that causal consistency is equivalent to leaf consistency.

Lemma A.1 If a compensation scheme ' on the class of liability problems L satis�es leaf
consistency, then it satis�es causal consistency.

Proof. The proof is by induction on jF 0T (j)j involved in the de�nition of Causal Cons.

Induction basis. For jF 0T (j)j = 1, the claim holds by Leaf Cons.

Induction hypothesis. Suppose that the claim holds for jF 0T (�j)j � t and t � 1.

Induction step. We show that the claim holds for jF 0T (j)j = t+ 1, where j = p(�j).
By the induction hypothesis, for every (N; T; d) 2 L, d�j 2 IRjNnF 0T (�j)j such that d�jj �

dj +
P

k2F 0T (�j)
(dk � 'k(N; T; d)) and d

�j
m � dm for every m 6= j in N n F 0T (�j), and every

l 2 N n F 0T (�j);

'l(N n F 0T (�j); T (N n F 0T (�j)); d
�j) = 'l(N; T; d):

By Leaf Cons, for dj 2 IRjNnF 0T (j)j such that djp(j) � dp(j)+
P

k2F 0T (j)
(dk � 'k(N; T; d)) and

djm � dm for every m 6= p(j) in N n F 0T (j), and every l0 2 N n F 0T (j);

'l0(N n F 0T (j); T (N n F 0T (j)); dj) = 'l0(N n F 0T (�j); T (N n F 0T (�j)); d
�j);

which implies that for every l0 2 N n F 0T (j);

'l0(N n F 0T (j); T (N n F 0T (j)); dj) = 'l0(N; T; d);

the desired claim. �

Next, we introduce a weak version of IUB in the sense that the individual upper bounds
requirement holds for only the leafs.
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Weak Individual Upper Bounds (WIUB) A compensation scheme ' on the class of
liability problems L satis�es weak individual upper bounds if for every (N; T; d) 2 L and
every i 2 L(T ),

'i(N; T; d) �
1

2
ei:

In the next lemma, we show that when a compensation scheme satis�es WIUB and

Causal Cons, then it also satis�es IUB.

Lemma A.2 If a compensation scheme ' on the class of liability problems L satis�es weak
individual upper bounds, and causal consistency, then ' satis�es individual upper bounds.

Proof. We prove that the individual upper bounds requirement holds for every other agent
not being a leaf. Let j be a player such that j 2 N n (f1g [ L(T )). Let d0 2 IRN such that
d0i = di for every i 2 N n F 0j (T ) and d0j = ej �

P
k2FT (j) 'k(N; T; d) � ej. By subsequently

applyingCausal Cons for all players in FT (j), it follows that (NnFT (j); T (NnFT (j)); d0) 2
L and

'j(N; T; d) = 'j(N n FT (j); T (N n FT (j)); d0):

Since j is a leaf on the subtree (N nFT (j); T (N nFT (j)) andWIUB is satis�ed, it follows
that

'j(N n FT (j); T (N n FT (j)); d0) �
1

2
d0j �

1

2
ej:

Clearly, the individual upper bounds requirement holds for agent 1. �

The next lemma is the key lemma for the proof of Theorem 6.2. This shows that if

a compensation scheme satis�es ULB, WIUB, and Causal Cons, then it must be the
Nucleolus compensation scheme.

Lemma A.3 If a compensation scheme ' on the class of liability problems L satis-

�es uniform lower bound, weak individual upper bounds, and causal consistency, then

'(N; T; d) = Nuc(N; T; d).

Proof. We show that for every liability problem, ULB,WIUB, and Causal Cons yield
the outcome computed by the Nuc algorithm. For notational simplicity, let x = '(N; T; d).

We consider liability problems with jN j = 2 and jN j � 3, respectively

Case 1 jN j = 2. Consider a liability problem (N; T; d) 2 L with jN j = 2. Then, by ULB
it follows that x2 � � 2(N; T; d) =

1
2
d2 and by the WIUB that x2 � 1

2
e2 =

1
2
d2. Hence

x2 =
1
2
d2, and thus x1 = d1 +

1
2
d2. This is equal to the outcome computed by the Nuc

algorithm.
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Case 2 jN j � 3. We show that the claim holds by induction on jN j.

Induction basis. We show that the claim holds for jN j = 3.

For a liability problem (N; T; d) 2 L with jN j = 3, there are two possibilities: either
(N; T ) is a line-tree (one branch) or (N; T ) is a tree with two branches.

Firstly, we consider a line-tree (N; T ) with T = f(1; 2); (2; 3)g. We have two possibilities
(i) and (ii): either d3

2
� d2+d3

3
or not.

(i) d3
2
� d2+d3

3
. By ULB and WIUB, it follows that x3 = d3

2
. Next, it follows by

ULB, WIUB for leaf 2, and Causal Cons in the subtree after removing agent 3 that
x2 =

d2+d3�x3
2

, and �nally x1 = dN � x2 � x3. So x is equal to the outcome computed by
the Nuc algorithm.

(ii) d3
2
> d2+d3

3
. By ULB, we must have that xj � d2+d3

3
for j = 1; 2; 3. WIUB for leaf

3 requires that x3 = d3
2
� c for some c � 0, and thus d3

2
� c � d2+d3

3
. This yields c � d3

6
� d2

3
.

By ULB, WIUB for leaf 2 and Causal Cons in the subtree after removing agent 3, it
follows that x2 = d2+d3�x3

2
, and thus x2 = d2+d3�x3

2
� d2+d3

3
. Substituting x3 = d3

2
� c in

this inequality gives c � d3
6
� d2

3
and thus c = d3

6
� d2

3
. This implies that x2 = x3 = d2+d3

3

and thus x1 = d1+ d2+d3
3
. Again x is equal to the outcome computed by the Nuc algorithm.

Next, we consider that (N; T ) is a tree with two branches, that is, T = f(1; 2); (1; 3)g.
Without loss of generality, let d2 � d3. By ULB and WIUB for leaf 3 it follows that

x3 =
d3
2
. Consider the reduced liability problem (N 0; T (N 0); d0), where N 0 = f1; 2g, T (N 0)

is a line-tree f(1; 2)g, and d0 = (d1 + d2 � x3; d2). Again, by ULB andWIUB for leaf 2

together with Causal Cons, x2 = d2
2
, and x1 = d1 + d2

2
+ d3

2
. Also in this case we have

that x is equal to the outcome computed by the Nuc algorithm.

Induction hypothesis. Fix an arbitrary n such that n > 3. Suppose that for any liability
problem (N 0; T 0; d0) 2 L with 3 � jN 0j � n� 1, '(N 0; T 0; d0) = Nuc(N 0; T 0; d0).

Induction step. We show that for any liability problem (N 0; T 0; d0) 2 L with jN 0j = n,
'(N 0; T 0; d0) = Nuc(N 0; T 0; d0).

We consider two possibilities (I) and (II): player j with minimal � j(N; T; d) over N ,
or equivalently minimal � j(N; T; d) over N n f1g (by Lemma 6.1), is either a leaf or not.

(I) There exists i 2 L(T ) such that � i(N; T; d) = minj2N � j(N; T; d), which is equal to
minj2Nnf1g � j(N; T; d) by Lemma 6.1. Fix this leaf i (if there are multiple, �x an arbitrary

one). By ULB and WIUB for leaf i, it follows that xi = di
2
. This is also the outcome

for i as computed by the Nuc algorithm, and thus xi = Nuci(N; T; d). Let N 0 = N n fig,
T (N 0) be the subtree of T on N 0, and d0 2 IRN 0

be such that d0j = dj for j 2 N 0 n fp(i)g
and d0p(i) = dp(i) + di � xi = dp(i) + di �Nuci(N; T; d).
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Consider the lower-bound liability game (N; vL) derived from the liability problem

(N; T; d). Then the lower-bound liability game derived from the reduced liability problem

(N 0; T (N 0); d0) is the game (N 0; v0L), where v
0
L is given by setting for S � N 0,

v0L(S) =

(
vL(S [ fig)�Nuci(N; T; d) if p(i) 2 S;
vL(S) otherwise:

It can be shown that (N 0; v0L) is the Davis-Maschler reduced game of (N; vL) on N
0 with

respect to Nuc(N; T; d).28 By this observation and the fact that the Nucleolus satis�es

the Davis-Maschler consistency29 , it holds that for every j 2 N 0 that Nucj(N; T; d) =

Nucj(N
0; T (N 0); d0). Furthermore, for every j 2 N 0, we have by induction hypothesis

that 'j(N
0; T (N 0); d0) = Nucj(N

0; T (N 0); d0). Hence, for every j 2 N 0 it holds that

Nucj(N; T; d) = 'j(N
0; T (N 0); d0). From Causal Cons, it now follows that for every

j 2 N 0, xj = 'j(N
0; T (N 0); d0) = Nucj(N; T; d).

(II) For every i 2 L(T ), it holds that minj2N � j(N; T; d) < � i(N; T; d), or equivalently
minj2Nnf1g � j(N; T; d) < � i(N; T; d) by Lemma 6.1. Let k be such that � k(N; T; d) =

minj2Nnf1g � j(N; T; d) and take some i 2 L(T ) \ F 0T (k). Thus i is subordinate of k. Since
i 6= k, we have that also p(i) 2 F 0T (k). From the Nuc algorithm we obtain that

Nuci(N; T; d) = Nucp(i)(N; T; d) = � k(N; T; d): (8.2)

By ULB, we have that xi � � k(N; T; d) = Nuci(N; T; d). Suppose that xi > Nuci(N; T; d).
Let N 0 = N n fig, T (N 0) be the subtree of T on N 0, and d0 2 IRN 0

be such that d0j = dj for

j 2 N 0 n fp(i)g and d0p(i) = dp(i) + di � xi = dp(i) + di � Nuci(N; T; d). By Causal Cons,
we have that

xp(i) = 'p(i)(N
0; T (N 0); d0) (8.3)

and by induction hypothesis,

'p(i)(N
0; T (N 0); d0) = Nucp(i)(N

0; T (N 0); d0): (8.4)

28For a game (N; v) 2 G, a vector x 2 IRN and non-empty subset N 0 of N , the Davis-Maschler reduced

game (Davis and Maschler 1965) on N 0 with respect to (N; v) and x is the game (N 0; wx) 2 G de�ned by
setting for all S � N 0,

wx(S) =

8>>>>>><>>>>>>:

v(N)�
X

i2NnN 0

xi if S = N 0;

max
T�NnN 0

�
v(S [ T )�

X
i2T

xi
�
if S 6= N 0; ;;

0 if S = ;:

29A solution f on a subclass G0 of G satis�es the Davis-Maschler consistency (Davis and Maschler 1965)
if for all (N; v) 2 G0 and every non-empty N 0 � N it holds that fi(N; v) = fi(N

0; wx) for all i 2 N 0, where

x = f(N; v).
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Let d00 2 IRN 0
be such that d00j = dj for j 2 N 0 nfp(i)g, and d00p(i) = dp(i)+di�Nuci(N; T; d).

Since d0p(i) < d
00
p(i) by the assumption that xi > Nuci(N; T; d), it follows from applying the

Nuc algorithm that

Nucp(i)(N
0; T (N 0); d0) < Nucp(i)(N

0; T (N 0); d00): (8.5)

By the fact that the lower bound liability game derived from the reduced liability prob-

lem (N 0; T (N 0); d00) is the Davis-Maschler reduced game of (N; vL) on N 0 with respect to

Nuc(N; T; d), it follows with the Davis-Maschler consistency (see Footnotes 28 and 29)

that

Nucp(i)(N
0; T (N 0); d00) = Nucp(i)(N; T; d): (8.6)

From the (in)equalities (8.2)-(8.6) it follows that

xp(i) < Nucp(i)(N; T; d) = � k(N; T; d);

which contradicts ULB. Therefore, for every i 2 L(T ) \ F 0T (k), xi = Nuci(N; T; d). For

every i 2 L(T ) \ F 0T (k), let N 0 = N n fig. Then it follows from the same argument as

mentioned above and from Causal Cons that for every j 2 N 0, xj = Nucj(N; T; d). �
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